Minimal Generating Sets for Semiflows - Equipe Autonomic and Critical Embedded Systems
Communication Dans Un Congrès Année : 2023

Minimal Generating Sets for Semiflows

Résumé

We discuss important characteristics of finite generating sets for $$\mathcal {F^{+}}$$F+, the set of all semiflows with non-negative coordinates of a Petri Net. We endeavor to regroup a number of algebraic results dispersed throughout the Petri Nets literature and also to better position the results while considering semirings such as $$\mathbb {N}$$N or $$\mathbb {Q^+}$$Q+ then fields such as $$\mathbb {Q}$$Q. As accurately as possible, we provide a range of new algebraic results on minimal semiflows, minimal supports, and finite minimal generating sets for a given family of semiflows. Minimality of semiflows and of support are critical to develop effective analysis of invariants and behavioral properties of Petri Nets. Main results are concisely presented in a table and our contribution is highlighted. We conclude with the analysis of an example drawn from the telecommunication industry underlining the efficiency brought by using minimal semiflows of minimal supports.
Fichier sous embargo
Fichier sous embargo
0 11 17
Année Mois Jours
Avant la publication
jeudi 1 janvier 2026
Fichier sous embargo
jeudi 1 janvier 2026
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04731934 , version 1 (11-10-2024)

Licence

Identifiants

Citer

Gerard Memmi. Minimal Generating Sets for Semiflows. 43th International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE), Jun 2023, Lisbon, Portugal. pp.189-205, ⟨10.1007/978-3-031-35355-0_12⟩. ⟨hal-04731934⟩
61 Consultations
1 Téléchargements

Altmetric

Partager

More