Kalman filter for dynamic source power and steering vector estimation based on empirical covariances - Institut Supérieur de l'Aéronautique et de l'Espace
Article Dans Une Revue Signal Processing Année : 2025

Kalman filter for dynamic source power and steering vector estimation based on empirical covariances

Résumé

Interferometric measurements correspond to sample covariance matrices of signals received by multiple sensors. In dynamic scenarios, such as radio astronomy imaging, the properties of these signals can vary over time, posing a significant challenge for study. This work addresses the issue of estimating the stochastic power and steering vector of signal sources from sample covariance measurements. A novel approach is proposed, introducing a non-standard Kalman filter designed to accommodate any noise and signal distribution, thereby broadening the Kalman filter's applicability to situations with unknown measurement models. The effectiveness of this method is highlighted in the case of joint estimation of source power and direction of arrival through simulations using synthetic data.
Fichier sous embargo
Fichier sous embargo
0 5 12
Année Mois Jours
Avant la publication
samedi 28 juin 2025
Fichier sous embargo
samedi 28 juin 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04887525 , version 1 (15-01-2025)

Identifiants

Citer

Cyril Cano, Mohammed Nabil El Korso, Éric Chaumette, Pascal Larzabal. Kalman filter for dynamic source power and steering vector estimation based on empirical covariances. Signal Processing, 2025, 230, pp.109868. ⟨10.1016/j.sigpro.2024.109868⟩. ⟨hal-04887525⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More